
MAT 342 Applied Complex Analysis
Solution to Midterm 2, April 17, 2013

1. (a) (10 points) Let C be the positively oriented unit circle

z = eiθ, −π ≤ θ ≤ π,

and let g(z) = z−1/2 = exp{−1
2

Log z} be the principal branch of the power

function z−1/2. Using parametric representation for C, evaluate the integral∫
C

g(z)dz.

Solution: By the definition of the path integrals, we shall compute the following∫ π

−π
g(eiθ)

deiθ

dθ
dθ = i

∫ π

−π
e−i

θ
2 eiθdθ = i

∫ π

−π
ei
θ
2dθ = 2ei

θ
2 |π−π = 4i

(b) (10 points) Let Cr be a circle |z| = r, 0 < r < 1, oriented counterclockwise, and
suppose that f(z) is analytic in the disk |z| ≤ 1. Show that there exists a constant
M > 0 such that ∣∣∣∣∫

Cr

g(z)f(z)dz

∣∣∣∣ ≤ 2πM
√
r,

where g(z) is the function from part (a).

Solution: We know that we have following inequality for any continuous function,
with no requirement on its being analytic:∣∣∣∣∫

Cr

h(z)dz

∣∣∣∣ ≤ 2πr sup
Cr

|h(z)|

Since f(z) is analytic -and hence continuous- we know that the quantity M defined
in the following way is a finite number:

M := sup
|z|≤1

f(z)

In the case of the function g(z)f(z) we have that

sup
Cr

|f(z)g(z)| ≤ M√
r

By combining these estimates we obtain that∣∣∣∣∫
Cr

g(z)f(z)dz

∣∣∣∣ ≤ 2πr
M√
r

= 2πM
√
r

2. Evaluate the following integrals
1



2

(a) (10 points) ∫
C

e3z

z3
dz,

where C is the circle |z − 1| = 3, oriented counterclockwise;

Solution: One might try a direct approach by parametrising the curve C, which
leads to a difficult, if not impossible, integral if we are confined to the usual meth-
ods. Nevertheless, it’s the magic of the Cauchy representation formula. Recall
that for a general holomorphic function f we have

f (n)(0) =
n!

2πi

∫
C

f(ζ)

ζn+1
dz

wherein C is any simple closed curve with the origin inside of it. If we take
f(z) = e3z, we shall have∫

C

e3z

z3
dz =

2πi

2!

d2e3z

dz2
|z=0 = 9πi

Remark 0.1. The function has to analytic for this formula to hold. Some students
have taken the function e3z

z2
, for which the Cauchy representation formula does not

hold since it isn’t analytic.

(b) (10 points) ∫
C

dz

z5
,

where C is the boundary of a pentagon with vertices at 3i,±3,±2− 2i, oriented
counterclockwise.

Solution-1: Note that the function z−5 has a global primitive and therefore its
integral along any closed path is zero.

-2: Another way of seeing this integral is by noting that the integrand is actually of

the form f(z)
z4+1 , and therefore, is equal to the fourth derivative of the function f(z) = 1.

-3: Note that the integrand is analytic outside of the origin. One may therefore
take any simple closed curve which can be deformed continuously to the pentagon C
as the path of integration. In particular, one may choose γ = eit, the circle of radius
1 around the origin. This will lead to a simple integral that can be calculated.
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3. (20 points) Let C be any simple positively oriented closed contour, and let

f(z) =

∫
C

2ζ3 + 1

(ζ − z)4
dζ.

Find f(z) when z is inside C, and when z is outside C.

Solution: When z is outside of the curve, the integrand is analytic since the de-
nominator is everywhere non-zero. Therefore, by the Cauchy-Goursat theorem, we
have that the integral is equal to 0.

When z is in the interior, however, we use the same idea as in problem 2 part (b)
to obtain

f(z) =
2πi

3!

d3 (2ζ3 + 1)

dζ3
|ζ=z = 4πi

Remark 0.2. For the first part, when z is ouside of the curve you have to justify why
it is valid to use the Cauchy-Goursat theorem.

4. (20 points) Let f(z) = u(x, y) + iv(x, y) be entire function, and suppose that the
function

2u(x, y)v(x, y) = Im[f(z)2]

has an upper bound: there exists c such that

u(x, y)v(x, y) ≤ c for all (x, y) ∈ R2.

Show that u(x, y) and v(x, y) are constant functions.

Solution: Recall that |ez| = e<z 1 Therefore, if we wish to solve the problem
using composition with the exponential function and using Liouville’s theorem about
bounded holomorphic functions, we have to convert the information we have on the
imaginary part of the function to the real part of another fuction.

Define g(z) := e−if
2(z). Since < (−iξ) = =ξ, we have that < (−if 2(z)) ≤ c. Hence,

|g(z)| ≤ ec. Liouville’s theorem tells us that g(z) must be constant. Note that the
exponential function is not invertible on C, and, therefore, we have to prove that the
constancy of ef

2(z) leads to constancy of f 2(z). To see this, we may differentiate and
show that the derivative f ′(z) vanishes and hence f must be a constant function.

Remark 0.3. Of course the function ef
2(z) need not a priori be bounded if we only

know about the imaginary part of f 2(z).

Remark 0.4. A real valued function cannot be analytic since the Cauchy-Riemann
condition cannot be satisfied for a real valued function. In particular, u and v cannot
be analytic. For the same reason one can’t talk about u or v being entire.

5. (20 points) Let f(z) = exp z2, and let R be the unit square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.
Find the points in R where |f(z)| reaches its maximum and minimum values.

1< and = denote the real and imaginary parts of a complex number respectively.
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Solution: Let z = x+ iy. Then

ez
2

= e<z
2

= ex
2−y2

and this tells us that the maximum and minimum occur at (1, 0) and (0, 1) respectively.

Remark 0.5. |ez| = e|z| does not hold unless z is a positive real number. Of course
the inequality always holds.

Remark 0.6. Obtaining an upper bound for a function does not tell us about the
point where the maxima or minima occur.

Remark 0.7. It’s true that an the modulus of an analytic function obtains its max-
imum on the boundary, nevertheless, checking the corner points will not in general
suffice. Boundary of the rectangle is all its sides, not just the vertices.


